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ntitative In vivo Imaging of the Effects of Inhibiting Integrin
aling via Src and FAK on Cancer Cell Movement:
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cts on E-cadherin Dynamics
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t cancer-related deaths are due to the development of metastatic disease, and several new molecularly
ed agents in clinical development have the potential to prevent disease progression. However, it remains
lt to assess the efficacy of antimetastatic agents in the clinical setting, and an increased understanding
such agents work at different stages of the metastatic cascade is important in guiding their clinical use.
ed optical window chambers combined with photobleaching, photoactivation, and photoswitching to
itatively measure (a) tumor cell movement and proliferation by tracking small groups of cells in the
t of the whole tumor, and (b) E-cadherin molecular dynamics in vivo following perturbation of integrin
ing by inhibiting focal adhesion kinase (FAK) and Src. We show that inhibition of Src and FAK
sses E-cadherin–dependent collective cell movement in a complex three-dimensional tumor environ-
and modulates cell-cell adhesion strength and endocytosis in vitro. This shows a novel role for integrin
ng in the regulation of E-cadherin internalization, which is linked to regulation of collective cancer cell
ent. This work highlights the power of fluorescent, direct, in vivo imaging approaches in the preclinical
tion of chemotherapeutic agents, and shows that inhibition of the Src/FAK signaling axis may provide
evalua

a strategy to prevent tumor cell spread by deregulating E-cadherin–mediated cell-cell adhesions. Cancer Res;
70(22); 9413–22. ©2010 AACR.
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heir physiologic environment, cells are in contact with
nding extracellular matrix (ECM) and with neighboring
Although cell-matrix adhesions are largely integrin-
cell-cell junctions are mediated by adherens junctions
ight junctions, and desmosomes. Cadherin-based AJs
e the initial means of cell-cell contact and have key
uring the development and maintenance of epithelial
ty (1, 2). Additionally, there is overwhelming evidence
-cadherin is an important tumor and/or invasion sup-
r (3–5). Tumor cells employ a number of strategies to
in vivo, either as individual cells or collectively as cohe-
ells that maintain cell-cell contacts (6). How-
ors can adapt their mode of movement in
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se to external stimuli, and several lines of evidence
rt the idea of cross-talk between integrin-mediated
CM interactions and E-cadherin–mediated cell-cell
ons that may be key to the plasticity observed in tumor
7, 8). Although the mechanisms involved are not under-
integrin-dependent modulation of Rho GTPases and
tomyosin cytoskeleton that is tethered at both adhesion
may play an important role (9). In addition, Src and fo-
hesion kinase (FAK), two non–receptor tyrosine kinases
re key regulators of integrin-dependent matrix adhe-
have been linked to the control of AJs. Upon integrin
ement both FAK and Src tyrosine kinases are autopho-
lated on specific tyrosine residues at integrin-mediated
ions. FAK autophosphorylation on Y397 creates a high-
y binding site for the SH2 domain of Src, which leads to
c-dependent phosphorylation of FAK on additional
ne residues. These act as protein-protein interaction
and link the FAK-Src complex to a number of down-
signaling pathways (10). Increased Src activity is asso-
with the disruption of E-cadherin–dependent AJs, and
as shown to be dependent on integrin signaling and
hosphorylation, indicating that the Src/FAK signaling
ay play an important role in the cross-talk between
in- and E-cadherin–dependent adhesions (7).
st cancer-related deaths are due to the development of

tatic disease, and several new molecularly targeted
s in clinical development (including those targeting
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rc and FAK) have the potential to prevent disease
ssion (11). It remains difficult, however, to assess
ficacy of antimetastatic agents in the clinical setting,
n increased understanding of how such agents work
erent stages of the metastatic cascade is important
ing their clinical use. As the tumor microenvironment
a key role in disease progression (12) it is becoming
t that the use of appropriate animal models is essen-
r determining the activity of such agents. For cells to
tasize to distant sites they must undergo a number of
typic changes, including changes in cell-matrix and
ll adhesions, migration, and invasive capacity, but
have been difficult to monitor in vivo. Here we de-
the use of optical window chambers in combination
hotobleaching, photoactivation, and photoswitching
ntitatively measure collective tumor cell movement,
ration, and protein dynamics in squamous cell carci-
cells within a tumor mass in vivo. We show that inhi-
the Src/FAK signaling axis prevents the collective
ent of tumor cells in vitro and in vivo, and identify
l role for this pathway in the regulation of E-cadherin
alization, cell-cell adhesion strength, and modulation
adherin dynamics downstream of β1-integrin. Taken
er these data highlight the benefits of fluorescent
imaging approaches along with the use of optical

w chambers in the preclinical evaluation of potential
therapeutic agents, and suggest that the anti-invasive
rties of small molecular inhibitors targeting Src and
ay be mediated in part by their ability to regulate
ll adhesion.

rials and Methods

ulture
1 cells (LGC Promochem) were transfected with green
scent protein (GFP)-E-cadherin (13), pDendra2
en), nuclear photoactivatable Green Cherry (nGPAC;
), or Y527F Src-GFP (15) using the Amaxa nucleofector
ection system (Amaxa GmbH). Cells stably expressing
against β1-integrin and their corresponding control
ere a kind gift from Erik Sahai (Cancer Research UK
n Institute, London, UK; ref. 16). For siRNA experi-
cells were transfected with 50 nmol/L of E-cadherin
siRNA smartpool or siCONTROL pool1 (Dharmacon)
the Amaxa nucleofector transfection system. The
ing treatments were used: β1 blocking antibody,
mAb13 (17) 2 μg/mL, 1 to 3 hours; dynasore (Sigma)
ol/L, 0.5 to 2 hours; PF-562,271 (Pfizer), 250 nmol/L,
2 hours; dasatinib (Bristol-Myers Squibb) 200 nmol/L,
2 hours.

en invasion assays
ls were seeded at the bottom of transwell inserts
ng) containing rat tail collagen type I (Roche). Trans-
serts were then placed in serum-free medium and me-
supplemented with 10% FCS, and 10 ng/mL epidermal

factor was placed on top of the gel. After 5 days, cells

tained with Calcein AM (Molecular Probes). Horizontal
405 nm
time, a

r Res; 70(22) November 15, 2010

American Association Copyright © 2010 
cancerres.aacrjournals.oDownloaded from 
ions through the gel were taken at 10-μm intervals us-
Olympus FV1000 confocal microscope. The number of
e pixels in each image was determined using Image J
re (NIH). The values obtained for individual sections
ormalized over the sum of values for all the sections
en expressed as a percentage of the control cell value.
ch experiment, samples were run in triplicate and at
our z-series were taken per sample. Projected images
or display purposes were also created using Image J.

se-based dissociation assay
ntification of adhesion strength following mechanical
of dispase-treated monolayers was determined as
usly described (18).

cal implantation of optical window chambers
ical window chambers were implanted into CD-1
mice under anesthesia. All animal work was carried
compliance with UK Home Office guidelines. Optical
w chambers were custom-fabricated using aluminum
o install the window, dorsal skin was sutured to a
p template. A circle of skin was removed and screw
were made using a 2-mm biopsy punch. The frame of
indow chamber was then fitted to either side of the
ap and secured using screwing nuts, the tightness of
was adjusted to ensure that blood vessels were not
ed. The window was then sutured to the skin and
clamp was removed. A small piece of tumor was
into the center of the window and was sealed with

erslip. Tumors were allowed to establish under the
ws for 10 days prior to imaging, at which time there
xtensive revascularization (Supplementary Fig. S1A
, Supplementary Movie S1). Further details on the
l window chambers are provided in Supplementary
ds.

noblot analysis
unoblot analysis was performed as previously

ibed (20). Primary antibodies used were anti-GFP
m), anti-E-cadherin, anti-FAK (Becton Dickinson
duction Laboratories), anti-pY397 FAK, anti-pY861
Biosource), anti-pY416 Src, anti-Src (Cell Signaling),
egrin (Chemicon), and anti-γ-tubulin (Sigma), all at
dilution.

escence recovery after photobleaching analysis
in vitromeasurements cells were maintained at 37°C in
perature-controlled chamber, whereas animals were
ained at 37°C on a heated stage for in vivo measure-
. Experiments were performed using an Olympus
0 confocal microscope with SIM scanner. For photo-
ing the following settings were used: pixel dwell time
x, pixel resolution 512 × 512, 5% (30% for in vivo)
laser power, pinhole 250 μm, 60× Oil 1.35 N.A. objec-

0× water 0.8 N.A. for in vivo), and a 3× zoom. Effective
bleaching was achieved using 50% (40% for in vivo)

laser power, 20 μs/pixel (40 μs/pixel for in vivo) dwell
nd a 1 frame (3 frames for in vivo) bleach time. Images
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aptured every 5 seconds for 75 frames (100 frames for
). For in vitro experiments, approximately 25 cells were
d over three independent experiments, and for in vivo
ments five animals were imaged per condition with six
s captured from each animal. Mice were treated with
,271 (33 mg/kg in 0.5% methylcellulose, p.o. by gavage)
utes prior to imaging. Fluorescent intensity measure-
derived from the region of interest used to bleach

averaged in Excel and used to plot recovery/decay
. Average measurements for each time point were
ed into SigmaPlot (Systat Inc) for exponential curve
. The half-time of recovery (t1/2) was calculated as
bed previously (21).

o photoswitching
dra2-expressing tumors were implanted in optical
w chambers and imaged at 0, 6, and 24 hours after
switching. All images were captured using an Olympus
0 confocal microscope equipped with a UMPLFLN
5 N.A. water immersion objective. Photoswitching of
a2 was achieved using the following settings: pixel
time 40 μs/px, 28% 405 nm laser power, 5 frame switch-
me. Mice were treated with PF-562,271 (33 mg/kg
% methylcellulose, p.o. by gavage bid) or dasatinib
g/kg in 80 mmol/L citrate buffer, p.o. by gavage daily)
g on the day of photoswitching. After photoswitching
on of interest, a z-series was acquired (sections every
) for both green and red channels. Image analysis
rformed using ImageJ. Each z-series was flattened into
age using the maximum z-intensity projection tool,
olded, and the area occupied by the red fluorescent
el was measured. This area was plotted over time as
increase in area occupied by migrating cells.

ytosis of E-cadherin
ntification of biotinylated E-cadherin endocytosis was

med as described previously (18). Further experimental was n
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are given in Supplementary S1 Text.

lts

nd Src regulate A431 collective cell movement
o and in vivo
had previously shown that A431 cells invade in a col-
manner in vitro, which is dependent on the presence
adherin–dependent AJs (20). Treatment of cells with
the FAK inhibitor PF-562,271 or the Src inhibitor
nib resulted in complete inhibition of collective cell in-
into collagen (Fig. 1A), at a concentration where FAK
activity (as measured by FAK autophosphorylation on
and Src activity (as measured by Src autophosphoryla-
t Y416) were inhibited respectively (Fig. 1B). Treatment
s with dasatinib also inhibited the Src-dependent phos-
ation of FAK on Y861 (Fig. 1B). To enable imaging and
ification of tumor cell movement in vivo, cells were

ected with the photoswitchable probe Dendra2 and
s were established under observation windows (Sup-

depen
their m

acrjournals.org

American Association Copyright © 2010 
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ntary Fig. S1A; ref. 22). A subpopulation of tumor cells
arked by switching Dendra2 from its green to red emit-
tate; z-sections were acquired over 24 hours (Fig. 1C),
ll movement was quantified by calculating the fold in-
in area of the red fluorescence (Fig. 1D). There was

sive movement of the tumor cells over 24 hours in
hicle-treated animals which was inhibited in both
nib- and PF-562,271–treated animals (Fig. 1C and D).
r studies were carried out in cells at the edge of the
s. Although A431 Dendra2 cells dispersed over time
rely detected any cells moving away from the original
area into the surrounding stroma within the time
of our experiments (Supplementary Fig. S2) and could
ore not use this approach to follow the invasion of the
cells into the surrounding stroma.
ough observation of A431 cell behavior in vivo indicat-
ensive cell movement, our results did not rule out the
le contribution of increased cell proliferation/survival
fold increase in the area being measured. To address
ntribution of proliferation and/or survival, A431 cells
transfected with a nuclear targeted photoactivatable
used to mCherry (nGPAC; ref. 14). A subpopulation of
cells was marked by activation of the nuclear targeted
activatable GFP and a confocal z-series was acquired
4 hours (Supplementary Fig. S3A). Three-dimensional
ring and spot detection of photoactivatable GFP-
d nuclei (Supplementary Fig. S3B) was used to quantify
mber of nuclei at each time point, and calculate the
hange in nuclear number (Supplementary Fig. S3C).
was a 1.2-fold increase in nuclear number over 24 hours,
was unchanged following PF-562,271 treatment.

ncrease in nuclear number was used to normalize
rements from Fig. 1D (Supplementary Fig. S3D). Thus,
inase activity did not contribute to the proliferation/
al of A431 cells in vivo in the time scale of this experi-
Furthermore, the basal level of tumor cell proliferation
ot sufficient to account for the fold increase in area
red following photoswitching.

herin modulates collective movement of A431
n vitro and in vivo
had previously reported that loss of E-cadherin at
of cell-cell adhesion inhibits collective invasion of
ells in vitro (20). However, overexpression of E-cadherin
ld increase; Supplementary Fig. S4A) also inhibited
on of A431 cells into collagen (Fig. 2A), suggesting that
nce exists between E-cadherin expression and collec-
vasive capacity. To address whether E-cadherin over-
sion affects tumor cell movement in vivo, cells were
d with Dendra2 and tumors were established under
ation windows. In contrast to control tumors, cells
pressing E-cadherin exhibited a marked reduction in
ty (Fig. 2B and C). Furthermore, visual observation of
ed images revealed that A431 cells maintained their
tive mode of migration in vivo (Fig. 2D; *, individual
ithin groups), suggesting that these cells are also
dent on E-cadherin–mediated cell-cell adhesions for
ovement in vivo.
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ignaling regulates E-cadherin dynamics in vitro
vivo
have recently shown that the use of fluorescence
ry after photobleaching (FRAP) allows us to monitor
herin dynamics both in vitro and in vivo (21).
es in the recovery rate of E-cadherin molecules are
ated with increased migratory potential of cells. For
le, the recovery rate of GFP-E-cadherin following
bleaching in migrating cells is slower than in station-
lls, whereas inhibition of Src signaling, which reduces
igration, increases the recovery rate of GFP-E-cadherin

ere we set out to determine whether changes in
erin dynamics are also seen following inhibition of

reduc
(Fig. 3

r Res; 70(22) November 15, 2010

American Association Copyright © 2010 
cancerres.aacrjournals.oDownloaded from 
kinase activity. GFP-E-cadherin at sites of cell-cell
ion was subjected to photobleaching (Fig. 3A, Supple-
ry Movies S2 and S3). Recovery kinetics data for
-cadherin ± PF-562,271 treatment was pooled and
to single exponential rise-to-maximum curves (Sup-
ntary Fig. S5A). R2 values reflected the tight fit
r data to the predicted values (control/PF-562,271,
0.98). Treatment of cells with PF-562,271 decreased
40%. To confirm these effects were specific to inhi-
of FAK kinase activity, we also used siRNA to knock
FAK expression (Supplementary Fig. S4B). A similar
Fig
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1. PF-562,271 and
ib inhibit collective cell
ent in vitro and in vivo.
sion of A431 cells into
n gels in the presence or
e of PF-562,271 or
ib. After 5 days, cells were
with calcein AM and
ed at 10-μm intervals. The
ent was performed in
e and representative series
ctions at indicated depths
the gel are shown. Scale

00 μm. B, immunoblot
s of pY397 FAK and
pression in control and
,271–treated cells, and
Src, Src, pY861 FAK, and
control and dasatinib-
cells. C, images showing
endra2 control-expressing
tumors of untreated mice or
eated with PF-562,271 or
ib, at different time points
otoswitching (red). Scale
00 μm. D, quantification
rea covered by red
ence at shown time points.
are the mean from at least
ependent experiments.
AK knockdown cells
ownstream effector of
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n signaling we carried out FRAP of GFP-E-cadherin in
xpressing β1-integrin siRNA in which there was a
ic knockdown of β1-integrin protein expression
ementary Fig. S4C) and also saw a reduction in t1/2
B). These results identify β1-integrin and its down-
effector FAK as key regulators of E-cadherin dynam-
d show that inhibition of E-cadherin–dependent

ive movement correlates with an increased rate of
ry of GFP-E-cadherin.

pooled
(Supp

e independent experiments. A and C, error bars, SE. D, zoomed images from B
ve cell movement. *, individual cells within a group; scale bars, 20 μm (left and c

acrjournals.org

American Association Copyright © 2010 
cancerres.aacrjournals.oDownloaded from 
next asked whether changes in E-cadherin dynamics
also be used as a readout of E-cadherin function in vivo.
rs expressing GFP-E-cadherin were established under
ation windows, and GFP-E-cadherin at sites of cell-cell
on was subjected to photobleaching (Fig. 3C, Supplemen-
ovies S4 and S5). Recovery kinetics data for GFP-E-
rin in either vehicle- or PF-562,271–treated animals were

and fitted to single exponential rise-to-maximum curves

lementary Fig. S5B). R2 values reflected the tight fit of our
2. E-cadherin modulates collective cell movement in vitro and in vivo. A, invasion of A431 and A431 GFP-E-cadherin cells into collagen gels.
days, cells were labeled with calcein AM and visualized at 10-μm intervals. Representative series of z-sections at indicated depths through the
shown. Scale bars, 200 μm. Quantification of invasion at 80 μm is shown for a representative experiment in a series of three. Values are the
rom triplicate wells. B, images showing A431 Dendra2 control or GFP-E-cadherin–expressing cells in tumors at different time points after
witching (red). Scale bars, 100 μm. C, quantification of the area covered by red fluorescence at shown time points. Values are the mean from at
(left) and higher magnification images (center and right) showing
enter images) and 10 μm (right image).
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o the predicted values (control/PF-562,271, R2 = 0.97).
ent of animals with PF-562,271 prior to photobleaching
P-E-cadherin resulted in a marked reduction in t1/2
ol, 38.3 ± 3.2 seconds; PF-562,271, 20.4 ± 2.5 seconds;

in alte
reduce

r Res; 70(22) November 15, 2010
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), similar to that observed in vitro. Thus, inhibition of
inase activity following treatment with PF-562,271 results
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3. PF-562,271 alters
erin dynamics in vitro
vivo. A, still images of
cadherin at cell-cell
s in untreated cells (top)
treated with PF-562,271
) captured prebleach and
g bleach. Scale bar, 5 μm.
, bleached area (B) t1/2 of
cadherin in control cells
treated with PF-562,271,
NA, or β1-integrin blocking
y. C, still images of
cadherin at cell-cell
s in tumors untreated
treated with PF-562,271
) captured prebleach and
g bleach. Arrows, bleached
) t1/2 of GFP-E-cadherin
rs from control or
,271 treated mice. A and
e bars, 5 μm. B and
es are the mean from at
, which correlates with
ive cell movement.
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ontrols E-cadherin internalization and cell-cell
ion strength downstream of β1-integrin
observation that E-cadherin overexpression and inhi-
of Src/FAK signaling both resulted in inhibition of
on and the ability of Src/FAK to regulate E-cadherin
ics both in vitro and in vivo led us to hypothesize that
ing the Src/FAK signaling axis may regulate the collec-
ovement of A431 cells via regulation of E-cadherin. It
en previously reported that the level of E-cadherin pro-
sites of cell-cell adhesion regulates cadherin adhesive-
23). Thus, we hypothesized that increased E-cadherin
sion at these sites may inhibit cell movement by in-
ng cell-cell adhesion strength. To determine the effect
adherin expression on cell-cell adhesion strength we

d confluent cultures with dispase, which results in de-
ent of the cells in an intact monolayer. The resistance

To
integr

ated E-cadherin internalization over 10 minutes in control or FAK siRNA cells, β1
re. D, t1/2 of GFP-E-cadherin in control or dynasore-treated cells. Values are the
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aggregation induced by mechanical stress of these
layers was then used as a measure of the relative
th of cell-cell contacts. Overexpression of E-cadherin
d in a reduction in the number of single cells detached
he cell sheets, whereas inhibition of E-cadherin expres-
y siRNA decreased adhesion strength (Fig. 4A), indicat-
crucial role for E-cadherin in A431 cell-cell adhesion
th. Treatment of cells with PF-562,271 or knockdown
K by siRNA was also observed to increase cell-cell
ion strength (Fig. 4A). Furthermore, inhibition of Src
activity by dasatinib increased cell-cell adhesion
th (Fig. 4A). However, this was not mediated by
sed expression of E-cadherin in the inhibitor-treated
Supplementary Fig. S6).

explore the signaling events taking place upon β1-
in inhibition, we looked at activation of both FAK
4. Inhibition of Src-dependent phosphorylation of FAK downstream of β1-integrin disrupts E-cadherin endocytosis and strengthens cell-cell
s. A, number of single cells that disaggregate from a dispase-treated monolayer. Values represent the mean from at least three independent
ents. B, number of single cells that disaggregate from a dispase-treated monolayer in control and Y527F Src-expressing cells in the presence or
e of β1-integrin blocking antibody or dasatinib. Values represent the mean from at least three independent experiments. C, quantification of
-integrin siRNA cells, control cells treated with dasatinib or
mean from at least 25 cells. A, B, and D, error bars, SE.
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c in β1-integrin siRNA–expressing cells. With vinculin
s a marker of integrin adhesions, activation of both Src
AK in control cells was detected in integrin adhesions
lementary Fig. S4D). In cells lacking β1-integrin,
er, although FAK was active at integrin adhesions
asured by pY397 FAK), active Src was absent and there
o detectable pY861 FAK (Supplementary Fig. S4D).
cells lacking β1-integrin are still able to assemble
atrix adhesions that contain active FAK. This may be
incomplete knockdown of β1-integrin in the cells or

ing to Y397 FAK from other β-integrin subunits (16).
ver, active Src was absent from these adhesions and
ore unable to phosphorylate FAK. Disruption of β1-
in signaling therefore specifically prevents activation
at integrin adhesion sites. In contrast, active Src was
resent at integrin adhesion sites in FAK knockdown
Supplementary Fig. S4E), whereas the amount of acti-
Src bound to FAK in wild-type cells was decreased in
esence of PF-562,271, as detected by immunoprecipita-
upplementary Fig. S4F). Thus, molecular characteriza-
f signaling through Src and FAK in both FAK and
egrin knockdown cells highlighted a single common
suppression of Src-dependent phosphorylation of

t integrin adhesions, either mediated via loss of activat-
from integrin adhesions (as seen in β1-integrin knock-
cells) or its inability to bind to FAK either through loss
protein (as seen in FAK knockdown cells) or kinase

ion (PF-562,271–treated cells). Taken together with the
of dasatinib to prevent phosphorylation of FAK on
this suggests that the observed effects on E-cadherin
hesion strength may be mediated via the Src-dependent
horylation of FAK.
confirm that the ability of Src and FAK to regulate
herin–dependent AJs required the Src-dependent
horylation of FAK downstream of β1-integrin signal-
expressed a constitutively active Src mutant (Y527F
A431 cells. Western blotting showed that activated
d pY861 FAK were increased in cells expressing
Src (Supplementary Fig. S4G). Constitutive activation
resulted in a weakening of cell-cell adhesions as mea-
by an increase in single cells following mechanical
tion (Fig. 4B) without causing complete dissolution
l-cell junctions (Supplementary Fig. S4H). Treatment
β1-integrin blocking antibody decreased the number
le cells in control cultures but had no effect in cells
sing activated Src (Fig. 4B). Thus, strengthening of
ll junctions following inhibition of β1-integrin is
ted when Src is constitutively active, indicating that
sion of an unregulated active Src negates the ability
integrin to control adhesion strength. Furthermore,
ent of cells with dasatinib prevented phosphorylation
on Y861 and increased adhesion strength (Figs. 1B

A), indicating that Src-dependent phosphorylation
K downstream of β1-integrin regulates adhesion
th.
treatment with PF-562,271 or dasatinib did not alter

-cadherin protein levels (Supplementary Fig. S6), Src/
ignaling must regulate E-cadherin function by other

signal
regula

r Res; 70(22) November 15, 2010
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nisms. E-cadherin–mediated cell-cell junctions are
dynamic structures and the concentration of E-

rin specifically at cell-cell junctions is controlled by
ytosis, which in turn regulates adhesion strength.
easure endocytosis we followed the internalization
tinylated cell surface E-cadherin: biotinylated cell sur-
-cadherin was progressively enriched in the intracel-
pool in control cells whereas in cells treated with
ore, a potent dynamin inhibitor that blocks vesicles
ng off the membrane (24), there was no internaliza-
f E-cadherin (Fig. 4C). E-cadherin internalization was
d in β1-integrin siRNA cells (Fig. 4C). A similar reduc-
E-cadherin internalization was seen in cells treated

asatinib or when FAK expression was knocked down
C).
upport of a link between E-cadherin internalization
hesion strength, treatment of cells with dynasore also
sed adhesion strength (Fig. 4A). Furthermore, FRAP
is of dynasore-treated cells showed a reduction in

/2 of GFP-E-cadherin, as was seen following inhibition
/FAK signaling (Fig. 4D). Thus, although measurement
adherin–mediated cell-cell adhesion strength and
herin internalization is not possible in vivo, changes
t1/2 may represent an indirect readout of E-cadherin
on that can be measured in vivo.

ssion

have identified a novel role for Src and FAK in regulat-
cadherin function that is required for the collective
ent of tumor cells. In human tumors loss of E-cadherin
ciated with more aggressive and invasive tumors. It is
vident, however, that the collective movement of tu-
which is dependent on the maintenance of cell-cell
ons, also plays a key role in the invasive capacity of
s (6). A tight balance exists between E-cadherin expres-
nd collective movement, and the dynamic regulation of
herin at cell-cell junctions is crucial in determining
on strength, which we had previously linked to the
tory capacity of tumor cells in vitro (21). Here we show
rc/FAK signaling downstream of β1-integrin controls
herin internalization and adhesion strength in vitro.
ional measurements of E-cadherin–mediated cell-cell
ion strength and E-cadherin internalization are not
tly possible in vivo, and it is therefore important to uti-
chniques such as FRAP to monitor E-cadherin dynamics
an provide an indirect readout of E-cadherin function
ould otherwise not be possible in vivo. The ability of
molecule inhibitors of Src and FAK to alter E-cadherin
ics in vivo correlated with their ability to strengthen
ll adhesion, inhibit E-cadherin internalization, and im-
tly inhibit the collective movement of A431 cells in vivo.
d FAK can regulate cell invasion in vitro through their
regulating cell migration and matrix metalloproteinase
y at sites of invadopodia (25–29). These findings identify
el additional mechanism through which β1-integrin

ing via Src-dependent phosphorylation of FAK may
te the collective movement of tumor cells by modulating
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ll adhesion strength through control of E-cadherin
alization.
iously skin flaps were used to monitor the movement
or cells in vivo, but studies using this method are
ted by the short period of time that migration can
nitored and the infrequency that individual cells move
within these time frames. To overcome these pro-
we utilized optical window chambers, which together
ecoverable anesthesia, enabled the repeated imaging of
ls over several days. In addition, in contrast to skin
observation windows do not require invasive surgery
diately prior to imaging, and therefore preserve the
tumor microenvironment by minimizing the risk of
matory response and tissue damage as a consequence
gery. Furthermore, images acquired using this method
yed improved signal to noise and increased sample
ty, when compared with our previously reported use
n flaps for FRAP (21). A comparison of FRAP data
ed in vivo using skin flaps and optical window imaging
ds is shown in Supplementary Fig. S5C and D. The
ing FRAP dataset obtained through the observation
ws exhibited R2 values comparable with those only
usly possible in vitro. To enable the imaging and quan-
ion of tumor cell movement in vivo we combined the

ntation of observation windows with the specific
g of tumor cells using the photoswitchable protein
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a2, in a similar manner to that recently reported by
and colleagues (22). Photoswitching of Dendra2 from

en to red emitting state permitted long-term monitor-
tumor cell behavior. In addition, use of the nuclear
ed photoactivatable probe GPAC (14) enabled the quan-
ion of nuclear division in vivo. Thus, photoswitchable
hotoactivatable probes, together with recoverable
ng using optical window chambers, can be used to
ment robust and reproducible assays for monitoring
ovement and proliferation of tumor cells in vivo and
de invaluable information regarding drug action
an help to dissect out the mechanism of action of
herapeutics.
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